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Symmetrization of the self-energy integral in the Yakhot-Orszag
renormalization-group calculation
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A further modification~through proper symmetrization of the self-energy integral! on Wang and Wu’s
modified calculations@Phys. Rev. E48, 37 ~1993!# reproduces Yakhot and Orszag’s result@J. Sci. Comput.1,
3 ~1986!#. @S1063-651X~97!01602-4#

PACS number~s!: 47.27.2i, 11.10.Gh
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The dynamic renormalization-group~RG! approach of Ma
and Mazenko@1# has been mainly a tool to study the larg
scale long-time properties of Navier-Stokes fluids driven
a random external noise, first used by Forster, Nelson,
Stephen@2#. A generalization given by DeDominicis an
Martin @3# includes the Kolmogorov spectrum of strong tu
bulence for a particular value of a parametere~54! coming
from the correlation of the random external stirring. Yakh
and Orszag@4,5# carried out the renormalization-group ca
culation based on these ideas, and obtained various univ
amplitudes associated with Kolmogorov turbulence~includ-
ing the case of a passive scalar!, in remarkable agreemen
with experimental numbers. However, Yakhot and Orsz
used ae-expansion scheme~commonly used in critical phe
nomena! in their calculations, where one setse50 in the
calculated amplitudes~which is equivalent to extracting th
ultraviolet pole in the self-energy integral!. This has led to
objections@6#, following which Wang and Wu@7# have sug-
gested a modification of the RG calculation.

In this paper, we would like to show that a further mod
fication in Wang and Wu’s calculations, through proper sy
metrization of the self-energy integral, gives back the res
of the Yakhot and Orszag calculation.

The inertial range turbulence has been modeled by
randomly driven Navier-Stokes equation

]u

]t
1~u•“ !u52

“P

r0
1n0“

2u1f ~1!

along with the incompressibility condition

“•u50, ~2!

whereu~x,t! andP~x,t! are the velocity and pressure field
r0 the density, andn0 the kinematic viscosity of the fluid; the
dynamics, having been modeled to be driven by the rand
stirring force f~x,t!, have been assumed to have a Gauss
white-noise statistics with the correlation
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in the Fourier space, wherePi j ~k!5~d i j2kikj /uku2!, and

F~k!5
2D0

ky
. ~4!

In the Fourier-transformed space, Eqs.~1! and~2! take the
form

~2 iv1n0k
2!ui~k,v!

5 f i~k,v!2
il0

2
Pi jl ~k!E ddqdv8

@2p#d11 E ddpdv9

@2p#d11

3uj~q,v8!ul~p,v9!@2p#ddd~q1p2k!

3@2p#d~v81v92v! ~5!

and

kjuj~k,v!50, ~6!

wherePi jl ~k!5kjPil ~k!1klPi j ~k! andl0 ~51! is the formal
expansion parameter. An ultraviolet cutoff at a wave num
L to the wave-vector integration is assumed, correspond
to the ‘‘internal’’ ~viscous! cutoff.

Now, one eliminates~i.e., integrates away! the ‘‘fast’’
modesu.~k,v! lying in the bandLe2r,k,L, leading to an
equation for the ‘‘slow’’ modesu,~k,v! ~belonging to
0,k,Le2r! given by
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,~k,v!2
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Pi jl ~k!E ddqdv8

@2p#d11 E ddpdv9
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3uj
,~q,v8!ul

,~p,v9!@2p#ddd~q1p2k!

3@2p#d~v81v92v!1Ri~k,v!, ~7!

with

Ri~k,v!52S i j ~k,v!uj
,~k,v!, ~8!
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which, when taken on to the left-hand side in Eq.~7!, gives
correction to the bare ‘‘viscosity’’n0k

2, given by the self-
energy

2S ik~k,v!

54S 2
il0

2 DPi jl ~k!E ddqdv8

@2p#d11 E ddpdv9

@2p#d11

3Qjm
. ~q,v8!Gln

.~p,v9!S 2
il0

2 DPnmk~p!

3@2p#ddd~q1p2k!@2p#d~v81v92v! ~9!

with Gi j ~k,v!5(2 iv1n0k
2)21Pi j ~k! being the propagato

andQik5Gi j F jlGlk* the velocity correlation. Using the prop
erty of isotropy,Xi j ~k!5X(k)Pi j ~k!, and carrying out the
frequency integrations, we obtain from Eq.~9!

S ik~k,v!5l0
2Pi jl ~k!E ddq

@2p#d
E ddp
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Pjm~q!Plmk~p!
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F~q!
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1

2 iv1n0q
21n0p

2

3@2p#ddd~q1p2k!. ~10!

Now, using thed function in Eq. ~10! to integrateonly
overp leads to
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At this point, Yakhot and Orszag make the substituti
q→q2k/2 in Eq. ~11!, and evaluate the integral in the lim
k→0 andv→0 by extracting the leading contribution from
the regionq@k, yielding

S i j
YO~k,v!5F Sd

@2p#d
d22d2e

2d~d12!G l0
2D0

n0
2 S eer21

eLe D k2Pi j ~k!

~12!

where

e541y2d ~13!

is the small parameter of the RG theory, which is to be se
zero in the square bracket.
to

Wang and Wu do not make the substitutionq→q2k/2 in
Eq. ~11!. Using expansions similar to those of Yakhot a
Orszag, their calculations yield

S i j
WW~k,v!5F Sd

@2p#d
d22d

2d~d12!G l0
2D0

n0
2 S eer21

eLe D k2Pi j ~k!

~14!

where the quantity in square brackets is found to be indep
dent ofe, alleviating one from settinge50.

However, we point out that there is no reason to prefe
do thep integration first in Eq.~10!. It is also equally pos-
sible to do theq integration first. Adding the results of th
two integrations gives

2S ik~k,v!5l0
2Pi jl ~k!F E ddq
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Evaluating the integrals in the RG limitk→0 andv→0
by picking up the leading contribution from the regionsq@k
andp@k, we find from Eq.~15!

S i j ~k,v!5F Sd
@2p#d

1

2 H d22d

2d~d12!
1
d21d2822y

2d~d12! J G
3

l0
2D0
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eLe D k2Pi j ~k!, ~16!

the first term being the~half of! Wang and Wu’s result,
whereas, the second term does depend ony ~and therefore on
e!.

Using Eq.~13!, it can easily be seen that this result@Eq.
~16!# reduces to the Yakhot-Orszag result, Eq.~12!. It should
be noted that, quite like Wang and Wu’s calculations, we
not make any replacement likeq→q2k/2 or p→p2k/2 to
get the result@Eq. ~16!# from Eq. ~15!.

We have thus made a proper symmetrization of the s
energy integral@given by Eq.~10!# by giving no preference
to one integral over the other through the use of thed func-
tion. Yakhot and Orszag’s RG calculations achieve the sy
metrization through the substitutionq→q2k/2 in Eq. ~11!.
Although it changes the limit of integration t
Le2r,uq2k/2u,L, this substitution reproduces the result
Eq. ~16! in the leading order mainly becausek!L.
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